In constructing local Fourier bases and in solving differential equations with nonperiodic solutions through Fourier spectral algorithms, it is necessary to solve the Fourier Extension Problem. This is the task of extending a nonperiodic function, defined on an interval , to a function which is periodic on the larger interval . We derive the asymptotic Fourier coefficients for an infinitely differentiable function which is one on an interval , identically zero for , and varies smoothly in between. Such smoothed “top-hat” functions are “bells” in wavelet theory. Our bell is (for x ≥ 0) where where . By applying steepest descents to approximate the coefficient integrals in the limit of large degree j , we show that when the width L is fixed, ...